Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Scand J Med Sci Sports ; 34(4): e14630, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644663

RESUMO

The effects of a 12-week gait retraining program on the adaptation of the medial gastrocnemius (MG) and muscle-tendon unit (MTU) were investigated. 26 runners with a rearfoot strike pattern (RFS) were randomly assigned to one of two groups: gait retraining (GR) or control group (CON). MG ultrasound images, marker positions, and ground reaction forces (GRF) were collected twice during 9 km/h of treadmill running before and after the intervention. Ankle kinetics and the MG and MTU behavior and dynamics were quantified. Runners in the GR performed gradual 12-week gait retraining transitioning to a forefoot strike pattern. After 12-week, (1) ten participants in each group completed the training; eight participants in GR transitioned to non-RFS with reduced foot strike angles; (2) MG fascicle contraction length and velocity significantly decreased after the intervention for both groups, whereas MG forces increased after intervention for both groups; (3) significant increases in MTU stretching length for GR and peak MTU recoiling velocity for both groups were observed after the intervention, respectively; (4) no significant difference was found for all parameters of the series elastic element. Gait retraining might potentially influence the MG to operate at lower fascicle contraction lengths and velocities and produce greater peak forces. The gait retraining had no effect on SEE behavior and dynamics but did impact MTU, suggesting that the training was insufficient to induce mechanical loading changes on SEE behavior and dynamics.


Assuntos
Marcha , Músculo Esquelético , Corrida , Sapatos , Tendões , Humanos , Corrida/fisiologia , Músculo Esquelético/fisiologia , Marcha/fisiologia , Masculino , Fenômenos Biomecânicos , Adulto , Tendões/fisiologia , Adulto Jovem , Feminino , Ultrassonografia , Adaptação Fisiológica
2.
Front Bioeng Biotechnol ; 12: 1352334, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572360

RESUMO

Objective: This study aims to explore the effects of 12-week gait retraining (GR) on plantar flexion torque, architecture, and behavior of the medial gastrocnemius (MG) during maximal voluntary isometric contraction (MVIC). Methods: Thirty healthy male rearfoot strikers were randomly assigned to the GR group (n = 15) and the control (CON) group (n = 15). The GR group was instructed to wear minimalist shoes and run with a forefoot strike pattern for the 12-week GR (3 times per week), whereas the CON group wore their own running shoes and ran with their original foot strike pattern. Participants were required to share screenshots of running tracks each time to ensure training supervision. The architecture and behavior of MG, as well as ankle torque data, were collected before and after the intervention. The architecture of MG, including fascicle length (FL), pennation angle, and muscle thickness, was obtained by measuring muscle morphology at rest using an ultrasound device. Ankle torque data during plantar flexion MVIC were obtained using a dynamometer, from which peak torque and early rate of torque development (RTD50) were calculated. The fascicle behavior of MG was simultaneously captured using an ultrasound device to calculate fascicle shortening, fascicle rotation, and maximal fascicle shortening velocity (Vmax). Results: After 12-week GR, 1) the RTD50 increased significantly in the GR group (p = 0.038), 2) normalized FL increased significantly in the GR group (p = 0.003), and 3) Vmax increased significantly in the GR group (p = 0.018). Conclusion: Compared to running training, GR significantly enhanced the rapid strength development capacity and contraction velocity of the MG. This indicates the potential of GR as a strategy to improve muscle function and mechanical efficiency, particularly in enhancing the ability of MG to generate and transmit force as well as the rapid contraction capability. Further research is necessary to explore the effects of GR on MG behavior during running in vivo.

3.
Angew Chem Int Ed Engl ; : e202404834, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588076

RESUMO

Transition metal oxides (TMOs) are key in electrochemical energy storage, offering cost-effectiveness and a broad potential window. However, their full potential is limited by poor understanding of their slow reaction kinetics and stability issues. This study diverges from conventional complex nano-structuring, concentrating instead on spin-related charge transfer and orbital interactions to enhance the reaction dynamics and stability of TMOs during energy storage processes. We successfully reconfigured the orbital degeneracy and spin-dependent electronic occupancy by disrupting the symmetry of magnetic cobalt (Co) sites through straightforward strain stimuli. The key to this approach lies in the unfilled Co 3d shell, which serves as a spin-dependent regulator for carrier transfer and orbital interactions within the reaction. We observed that the opening of these 'spin gates' occurs during a transition from a symmetric low-spin state to an asymmetric high-spin state, resulting in enhanced reaction kinetics and maintained structural stability. Specifically, the spin-rearranged Al-Co3O4 exhibited a specific capacitance of 1371 F g-1, which is 38% higher than that of unaltered Co3O4. These results not only shed light on the spin effects in magnetic TMOs but also establish a new paradigm for designing electrochemical energy storage materials with improved efficiency.

4.
Front Bioeng Biotechnol ; 12: 1310464, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444649

RESUMO

The utilization of compression garments (CGs) has demonstrated the potential to improve athletic performance; however, the specific mechanisms underlying this enhancement remain a subject of further investigation. This study aimed to examine the impact of CGs on running mechanics and muscle synergies from a neuromuscular control perspective. Twelve adult males ran on a treadmill at 12 km/h, while data pertaining to lower limb kinematics, kinetics, and electromyography were collected under two clothing conditions: whole leg compression garments and control. The Non-negative matrix factorization algorithm was employed to extract muscle synergy during running, subsequently followed by cluster analysis and correlation analysis. The findings revealed that the CGs increased knee extension and reduced hip flexion at foot strike compared with the control condition. Moreover, CGs were found to enhance stance-phase peak knee extension, while diminishing hip flexion and maximal hip extension during the stance-phase, and the ankle kinematics remained unaltered. We extracted and classified six synergies (SYN1-6) during running and found that only five SYNs were observed after wearing CGs. CGs altered the structure of the synergies and changed muscle activation weights and durations. The current study is the first to apply muscle synergy to discuss the effect of CGs on running biomechanics. Our findings provide neuromuscular evidence for the idea of previous studies that CGs alter the coordination of muscle groups, thereby affecting kinematic characteristics during running.

5.
Small ; : e2307482, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412428

RESUMO

Manganese-based oxides (MnOx ) suffer from sluggish charge diffusion kinetics and poor cycling stability in sodium ion storage. Herein, an interfacial electric field (IEF) in CeO2 /MnOx is constructed to obtain high electronic/ionic conductivity and structural stability of MnOx . The as-designed CeO2 /MnOx exhibits a remarkable capacity of 397 F g-1 and favorable cyclic stability with 92.13% capacity retention after 10,000 cycles. Soft X-ray absorption spectroscopy and partial density of states results reveal that the electrons are substantially injected into the Mn t2g orbitals driven by the formed IEF. Correspondingly, the MnO6 units in MnOx are effectively activated, endowing the CeO2 /MnOx with fast charge transfer kinetics and high sodium ion storage capacity. Moreover, In situRaman verifies a remarkably increased structural stability of CeO2 /MnOx , which is attributed to the enhanced Mn─O bond strength and efficiently stabilized MnO6 units. Mechanism studies show that the downshift of Mn 3d-band center dramatically increases the Mn 3d-O 2p orbitals overlap, thus inhibiting the Jahn-Teller (J-T) distortion of MnOx during sodium ion insertion/extraction. This work develops an advanced strategy to achieve both fast and sustainable sodium ion storage in metal oxides-based energy materials.

6.
PeerJ ; 12: e16757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38223763

RESUMO

The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing (CMTM) family includes CMTM1-8 and CKLF, and they play key roles in the hematopoietic, immune, cardiovascular, and male reproductive systems, participating in the physiological functions, cancer, and other diseases associated with these systems. CMTM family members activate and chemoattract immune cells to affect the proliferation and invasion of tumor cells through a similar mechanism, the structural characteristics typical of chemokines and transmembrane 4 superfamily (TM4SF). In this review, we discuss each CMTM family member's chromosomal location, involved signaling pathways, expression patterns, and potential roles, and mechanisms of action in pancreatic, breast, gastric and liver cancers. Furthermore, we discuss several clinically applied tumor therapies targeted at the CMTM family, indicating that CMTM family members could be novel immune checkpoints and potential targets effective in tumor treatment.


Assuntos
Quimiocinas , Proteínas com Domínio MARVEL , Neoplasias , Humanos , Quimiocinas/genética , Proteínas com Domínio MARVEL/genética , Transdução de Sinais , Neoplasias/genética
7.
J Int Med Res ; 52(1): 3000605231225540, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38258738

RESUMO

OBJECTIVE: To identify risk factors associated with snakebite severity and determine whether tourniquet use can affect the severity and outcome of snakebites. METHODS: The clinical data of patients who sustained limb snakebites from 1 March 2021 to 31 October 2022 were reviewed. The patients were divided into three groups according to snakebite severity: mild (517 cases), moderate (112 cases), and severe (8 cases). We compared the clinical data of mild versus moderate to severe snakebites. Multivariate logistic regression was used to determine the independent risk factors for moderate to severe snakebites. RESULTS: The study involved 637 patients. There were statistically significant differences in age, tourniquet use, onset time, white blood cell increase, platelet decrease, creatine kinase (CK) increase, activated partial thromboplastin time shortening, and length of stay between patients with mild snakebites and those with moderate to severe snakebites. Multivariate logistic regression analysis showed that age, tourniquet use, and CK increase were independent risk factors for moderate to severe snakebites. CONCLUSION: The overall severity of snakebites in Chongqing is mild, and the prognosis is good. Age, tourniquet use, and CK increase are independent risk factors for the severity of snakebites. We do not recommend tourniquet use after snakebites in Chongqing.


Assuntos
Mordeduras de Serpentes , Humanos , Estudos Retrospectivos , Mordeduras de Serpentes/terapia , Torniquetes , China/epidemiologia , Plaquetas , Creatina Quinase
8.
Scand J Med Sci Sports ; 34(1): e14516, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37817483

RESUMO

PURPOSE: This study investigated the effects of a 12-week gait retraining program on the morphological and mechanical properties of the Achilles tendon (AT) during running on the basis of real-time dynamic ultrasound imaging. METHODS: A total of 30 male recreational runners who were used to wearing cushioned shoes with a rearfoot strike (RFS) pattern were recruited. They were randomized into a retraining group (RG, n = 15) and a control group (CG, n = 15). The RG group was asked to run in five-fingered minimalist shoes with a forefoot strike (FFS) pattern, and the CG group was asked to keep their strike pattern. Three training sessions were performed per week. All the participants in RG uploaded running tracks obtained through a mobile application (.jpg) after each session for training supervision. The ground reaction force, kinematics, and kinetics of the ankle joint at 10 km/h were collected using an instrumented split-belt treadmill and a motion capture system. The morphological (length and cross-sectional area) and mechanical characteristics (force, stress, strain, etc.) of AT in vivo were recorded and calculated with a synchronous ultrasonic imaging instrument before and after the intervention. Repeated two-way ANOVA was used to compare the aforementioned parameters. RESULTS: A total of 28 participants completed the training. The strike angle of RG after training was significantly smaller than that before training and significantly smaller than that of CG after training (F (1, 13) = 23.068, p < 0.001, partial η2 = 0.640). The length (F (1, 13) = 10.086, p = 0.007, partial η2 = 0.437) and CSA (F (1, 13) = 7.475, p = 0.017, partial η2 = 0.365) of AT in RG increased after training. A significant main effect for time was observed for the time-to-peak AT force (F (1, 13) = 5.225, p = 0.040, partial η2 = 0.287), average (F (1, 13) = 7.228, p = 0.019, partial η2 = 0.357), and peak AT loading rate (F (1, 13) = 11.687, p = 0.005, partial η2 = 0.473). CONCLUSION: Preliminary evidence indicated that a 12-week gait retraining program could exert a beneficial effect on AT. 57% (8/14) runners in RG shifted from RFS to FFS pattern. Although not all runners were categorized as FFS pattern after the intervention, their foot strike angle was reduced. Retraining primarily positively promoted AT morphological properties (i.e., CSA and length) to strengthen AT capability for mechanical loading.


Assuntos
Tendão do Calcâneo , Humanos , Masculino , Tendão do Calcâneo/diagnóstico por imagem , Articulação do Tornozelo , Fenômenos Biomecânicos , , Marcha , Extremidade Inferior , Sapatos
9.
J Sport Health Sci ; 13(1): 108-117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37220811

RESUMO

BACKGROUND: Foot kinematics, such as excessive eversion and malalignment of the hindfoot, are believed to be associated with running-related injuries. The majority of studies to date show that different foot strike patterns influence these specific foot and ankle kinematics. However, technical deficiencies in traditional motion capture approaches limit knowledge of in vivo joint kinematics with respect to rearfoot and forefoot strike patterns (RFS and FFS, respectively). This study uses a high-speed dual fluoroscopic imaging system (DFIS) to determine the effects of different foot strike patterns on 3D in vivo tibiotalar and subtalar joints kinematics. METHODS: Fifteen healthy male recreational runners underwent foot computed tomography scanning for the construction of 3-dimensional models. A high-speed DFIS (100 Hz) was used to collect 6 degrees of freedom kinematics for participants' tibiotalar and subtalar joints when they adopted RFS and FFS in barefoot condition. RESULTS: Compared with RFS, FFS exhibited greater internal rotation at 0%-20% of the stance phase in the tibiotalar joint. The peak internal rotation angle of the tibiotalar joint under FFS was greater than under RFS (p < 0.001, Cohen's d = 0.92). RFS showed more dorsiflexion at 0%-20% of the stance phase in the tibiotalar joint than FFS. RFS also presented a larger anterior translation (p < 0.001, Cohen's d = 1.28) in the subtalar joint at initial contact than FFS. CONCLUSION: Running with acute barefoot FFS increases the internal rotation of the tibiotalar joint in the early stance. The use of high-speed DFIS to quantify the movement of the tibiotalar and subtalar joint was critical to revealing the effects of RFS and FFS during running.


Assuntos
Corrida , Articulação Talocalcânea , Humanos , Masculino , Fenômenos Biomecânicos , Articulação do Tornozelo , Tornozelo
10.
J Am Chem Soc ; 145(49): 26699-26710, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38039528

RESUMO

Transition-metal oxides (TMOs) often struggle with challenges related to low electronic conductivity and unsatisfactory cyclic stability toward cationic intercalation. In this work, we tackle these issues by exploring an innovative strategy: leveraging heightened π-donation to activate the t2g orbital, thereby enhancing both electron/ion conductivity and structural stability of TMOs. We engineered Ni-doped layered manganese dioxide (Ni-MnO2), which is characterized by a distinctive Ni-O-Mn bridging configuration. Remarkably, Ni-MnO2 presents an impressive capacitance of 317 F g-1 and exhibits a robust cyclic stability, maintaining 81.58% of its original capacity even after 20,000 cycles. Mechanism investigations reveal that the incorporation of Ni-O-Mn configurations stimulates a heightened π-donation effect, which is beneficial to the π-type orbital hybridization involving the O 2p and the t2g orbital of Mn, thereby accelerating charge-transfer kinetics and activating the redox capacity of the t2g orbital. Additionally, the charge redistribution from Ni to the t2g orbital of Mn effectively elevates the low-energy orbital level of Mn, thus mitigating the undesirable Jahn-Teller distortion. This results in a subsequent decrease in the electron occupancy of the π*-antibonding orbital, which promotes an overall enhancement in structural stability. Our findings pave the way for an innovative paradigm in the development of fast and stable electrode materials for intercalation energy storage by activating the low orbitals of the TM center from a molecular orbital perspective.

11.
Bioengineering (Basel) ; 10(10)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37892884

RESUMO

PURPOSE: To explore the difference in the biomechanics of the lower extremity during alternating jump rope skipping (AJRS) under barefoot and shod conditions. METHODS: Fourteen experienced AJRS participants were randomly assigned to wear jump rope shoes or be barefoot (BF) during the AJRS at a self-selected speed. The Qualisys motion capture system and Kistler force platform were used to synchronously collect the ground reaction forces and trajectory data of the hip, knee, ankle, and metatarsophalangeal (MTP) joints. One-dimensional statistical parameter mapping was used to analyze the kinematics and kinetics of the lower extremity under both conditions using paired t-tests. RESULTS: Wearing shoes resulted in a significant decrease in the ROM (p < 0.001) and peak angular velocity (p < 0.001) of the MTP joint during the landing phase. In addition, the MTP joint power (p < 0.001) was significantly larger under shod condition at 92-100% of the landing phase. Moreover, wearing shoes reduced the peak loading rate (p = 0.002). CONCLUSION: The findings suggest that wearing shoes during AJRS could provide better propulsion during push-off by increasing the MTP plantarflexion joint power. In addition, our results emphasize the significance of the ankle and MTP joint by controlling the ankle and MTP joint angle.

12.
Front Physiol ; 14: 1263309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841316

RESUMO

Transcranial direct current stimulation (tDCS) can improve motor control performance under fatigue. However, the influences of tDCS on factors contributing to motor control (e.g., cortical-muscular functional coupling, CMFC) are unclear. This double-blinded and randomized study examined the effects of high-definition tDCS (HD-tDCS) on muscular activities of dorsiflexors and plantarflexors and CMFC when performing ankle dorsi-plantarflexion under fatigue. Twenty-four male adults were randomly assigned to receive five sessions of 20-min HD-tDCS targeting primary motor cortex (M1) or sham stimulation. Three days before and 1 day after the intervention, participants completed ankle dorsi-plantarflexion under fatigue induced by prolonged running exercise. During the task, electroencephalography (EEG) of M1 (e.g., C1, Cz) and surface electromyography (sEMG) of several muscles (e.g., tibialis anterior [TA]) were recorded synchronously. The corticomuscular coherence (CMC), root mean square (RMS) of sEMG, blood lactate, and maximal voluntary isometric contraction (MVC) of ankle dorsiflexors and plantarflexors were obtained. Before stimulation, greater beta- and gamma-band CMC between M1 and TA were significantly associated with greater RMS of TA (r = 0.460-0.619, p = 0.001-0.024). The beta- and gamma-band CMC of C1-TA and Cz-TA, and RMS of TA and MVC torque of dorsiflexors were significantly higher after HD-tDCS than those at pre-intervention in the HD-tDCS group and post-intervention in the control group (p = 0.002-0.046). However, the HD-tDCS-induced changes in CMC and muscle activities were not significantly associated (r = 0.050-0.128, p = 0.693-0.878). HD-tDCS applied over M1 can enhance the muscular activities of ankle dorsiflexion under fatigue and related CMFC.

13.
J Sports Sci Med ; 22(3): 582-590, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37711715

RESUMO

This study aims to quantify how habitual foot strike patterns would affect ankle kinetics and the behavior and mechanics of the medial gastrocnemius-tendon unit (MTU) during running. A total of 14 runners with non-rearfoot strike patterns (NRFS) and 15 runners with rearfoot strike patterns (RFS) ran on an instrumented treadmill at a speed of 9 km/h. An ultrasound system and a motion capture system were synchronously triggered to collect the ultrasound images of the medial gastrocnemius (MG) and marker positions along with ground reaction forces (GRF) during running. Ankle kinetics (moment and power) and MG/MTU behavior and mechanical properties (MG shortening length, velocity, force, power, MTU shortening/lengthening length, velocity, and power) were calculated. Independent t-tests were performed to compare the two groups of runners. Pearson correlation was conducted to detect the relationship between foot strike angle and the MTU behavior and mechanics. Compared with RFS runners, NRFS runners had 1) lower foot strike angles and greater peak ankle moments; 2) lower shortening/change length and contraction velocity and greater MG peak force; 3) greater MTU lengthening, MTU shortening length and MTU lengthening velocity and power; 4) the foot strike angle was positively related to the change of fascicle length, fascicle contraction length, and MTU shortening length during the stance phase. The foot strike angle was negatively related to the MG force and MTU lengthening power. The MG in NRFS runners appears to contract with greater force in relatively isometric behavior and at a slower shortening velocity. Moreover, the lengthening length, the lengthening velocity of MTU, and the MG force were greater in habitual NRFS runners, leading to a stronger stretch reflex response potentially.


Assuntos
Corrida , Tendões , Humanos , Tendões/diagnóstico por imagem , , Extremidade Inferior , Articulação do Tornozelo
14.
Front Bioeng Biotechnol ; 11: 1251324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744258

RESUMO

Existing studies on the biomechanical characteristics of the first metatarsophalangeal joint (1st MTPJ) during shod running are limited to sagittal plane assessment and rely on skin marker motion capture, which can be affected by shoes wrapping around the 1st MTPJ and may lead to inaccurate results. This study aims to investigate the in vivo effects of different habitual foot strike patterns (FSP) on the six degrees of freedom (6DOF) values of the 1st MTPJ under shod condition by utilizing a dual-fluoroscopic imaging system (DFIS). Long-distance male runners with habitual forefoot strike (FFS group, n = 15) and rearfoot strike (RFS group, n = 15) patterns were recruited. All participants underwent foot computed tomography (CT) scan to generate 3D models of their foot. The 6DOF kinematics of the 1st MTPJ were collected using a DFIS at 100 Hz when participants performed their habitual FSP under shod conditions. Independent t-tests and one-dimensional statistical parametric mapping (1-d SPM) were employed to analyze the differences between the FFS and RFS groups' 1st MTPJ 6DOF kinematic values during the stance phase. FFS exhibited greater superior translation (3.5-4.9 mm, p = 0.07) during 51%-82% of the stance and higher extension angle (8.4°-10.1°, p = 0.031) during 65%-75% of the stance in the 1st MTPJ than RFS. Meanwhile, FFS exhibited greater maximum superior translation (+3.2 mm, p = 0.022), maximum valgus angle (+6.1°, p = 0.048) and varus-valgus range of motion (ROM) (+6.5°, p = 0.005) in the 1st MTPJ during stance. The greater extension angle of the 1st MTPJ in the late stance suggested that running with FFS may enhance the propulsive effect. However, the higher maximum valgus angle and the ROM of varus-valgus in FFS may potentially lead to the development of hallux valgus.

15.
Front Physiol ; 14: 1256908, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745236

RESUMO

The purpose of this study was to investigate the differences in the morphological and viscoelastic properties of the Achilles tendon (AT) among different groups (rearfoot strikers vs. forefoot strikers vs. non-runners). Thirty healthy men were recruited, including habitual forefoot strike runners (n = 10), rearfoot strike runners (n = 10), and individuals with no running habits (n = 10). The AT morphological properties (cross-sectional area and length) were captured by using an ultrasound device. The real-time ultrasound video of displacement changes at the medial head of the gastrocnemius and the AT junction during maximal voluntary isometric contraction and the plantar flexion moment of the ankle was obtained simultaneously by connecting the ultrasound device and isokinetic dynamometer via an external synchronisation box. The results indicated that male runners who habitually forefoot strike exhibited significantly lower AT hysteresis than male non-runners (p < 0.05). Furthermore, a greater peak AT force during maximal voluntary contraction was observed in forefoot strike male runners compared to that in male individuals with no running habits (p < 0.05). However, foot strike patterns were not related to AT properties in recreational male runners (p > 0.05). The lower AT hysteresis in male FFS runners implied that long-term forefoot strike patterns could enhance male-specific AT's ability to store and release elastic energy efficiently during running, resulting in a more effective stretch-shortening cycle. The greater peak AT force in male FFS runners indicated a stronger Achilles tendon.

16.
Bioengineering (Basel) ; 10(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37760131

RESUMO

In recent years, neuro-biomechanical enhancement techniques, such as transcranial direct current stimulation (tDCS), have been widely used to improve human physical performance, including foot biomechanical characteristics. This review aims to summarize research on the effects of tDCS on foot biomechanics and its clinical applications, and further analyze the underlying ergogenic mechanisms of tDCS. This review was performed for relevant papers until July 2023 in the following databases: Web of Science, PubMed, and EBSCO. The findings demonstrated that tDCS can improve foot biomechanical characteristics in healthy adults, including proprioception, muscle strength, reaction time, and joint range of motion. Additionally, tDCS can be effectively applied in the field of foot sports medicine; in particular, it can be combined with functional training to effectively improve foot biomechanical performance in individuals with chronic ankle instability (CAI). The possible mechanism is that tDCS may excite specific task-related neurons and regulate multiple neurons within the system, ultimately affecting foot biomechanical characteristics. However, the efficacy of tDCS applied to rehabilitate common musculoskeletal injuries (e.g., CAI and plantar fasciitis) still needs to be confirmed using a larger sample size. Future research should use multimodal neuroimaging technology to explore the intrinsic ergogenic mechanism of tDCS.

17.
Front Mol Biosci ; 10: 1220193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37602326

RESUMO

The tumor microenvironment (TME) is an intricate ecosystem that is actively involved in various stages of cancer occurrence and development. Some characteristics of tumor biological behavior, such as proliferation, migration, invasion, inhibition of apoptosis, immune escape, angiogenesis, and metabolic reprogramming, are affected by TME. Studies have shown that non-coding RNAs, especially long-chain non-coding RNAs and microRNAs in cancer-derived exosomes, facilitate intercellular communication as a mechanism for regulating angiogenesis. They stimulate tumor growth, as well as angiogenesis, metastasis, and reprogramming of the TME. Exploring the relationship between exogenous non-coding RNAs and tumor-associated endothelial cells, as well as their role in angiogenesis, clinicians will gain new insights into treatment as a result.

18.
Biomimetics (Basel) ; 8(4)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37622972

RESUMO

Sound reception was investigated in the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) at its most sensitive frequency. The computed tomography scanning, sound speed, and density results were used to develop a three-dimensional numerical model of the porpoise sound-reception system. The acoustic fields showed that sounds can reach the ear complexes from various pathways, with distinct receptivity peaks on the forward, left, and right sides. Reception peaks were identified on the ipsilateral sides of the respective ears and found on the opposite side of the ear complexes. These opposite maxima corresponded to subsidiary hearing pathways in the whole head, especially the lower head, suggesting the complexity of the sound-reception mechanism in the porpoise. The main and subsidiary sound-reception pathways likely render the whole head a spatial receptor. The low-speed and -density mandibular fats, compared to other acoustic structures, are significant energy enhancers for strengthening forward sound reception. Based on the porpoise reception model, a biomimetic receptor was developed to achieve directional reception, and in parallel to the mandibular fats, the silicon material of low speed and density can significantly improve forward reception. This bioinspired and biomimetic model can bridge the gap between animal sonar and artificial sound control systems, which presents potential to be exploited in manmade sonar.

19.
Sensors (Basel) ; 23(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37631755

RESUMO

With the continuous progress and application of robotics technology, the importance of mobile robots capable of adapting to specialized work environments is gaining prominence. Among them, achieving precise and stable control of AGVs (Automated Guided Vehicles) stands as a paramount task propelling the advancement of mobile robotics. Consequently, this study devises a control system that enables AGVs to attain stable and accurate motion through equipment connection and debugging, kinematic modeling of the four-wheel steering AGV, and a selection and comparative analysis of motion control algorithms. The effectiveness of the Stanley-PID control algorithm in guiding the motion of a four-wheel steering AGV is validated through MATLAB 2021a simulation software. The simulation results illustrate the outstanding stability and precise control capabilities of the Stanley-PID algorithm.

20.
Materials (Basel) ; 16(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37444885

RESUMO

The new magnetic refrigeration (MR) technology, which uses the magnetocaloric effect (MCE) of materials for refrigeration, has shown apparent advantages over the compression refrigeration of freon and other gases. Therefore, how to obtain materials with excellent magnetic entropy change near room temperature is of great significance for the realization of MR. In order to achieve high Tc of a Gd-based amorphous alloy, Gd45Co50Al5 amorphous alloy with good room temperature MCE was selected, and a series of Gd45Co50-xFexAl5 (x = 2, 5, 10) amorphous alloys were prepared by adding Fe instead of Co. In this paper, the effect of Fe addition on the Curie temperature, and the magnetic entropy change in the alloys, were studied thoroughly. The results show that the Curie temperature is increased to 281 K by adding 5% Fe elements, which is mainly related to the enhanced 3d-3d interaction of transition elements caused by Fe addition, and the maximum value of magnetic entropy change is 3.24 J/(kg·K) under a field of 5 T. The results are expected to provide guidance for further improving the room temperature MCE of Gd-based amorphous alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...